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Abstract

Background: Our group has identified the receptor for advanced glycation end-products 

(RAGE) as a predictor of World Trade Center particulate matter associated lung Injury. The aim of 

this systematic review is to assess the relationship between RAGE and obstructive airways disease 

(OAD) secondary to environmental exposure.

Methods: A comprehensive search using PubMed and EMBASE was performed on 01/05/2018 

utilizing keywords focusing on environmental exposure, obstructive airways disease, RAGE and 

was registered with PROSPERO(2018-CRD42018093834). We included original human research 

studies in English, focusing on pulmonary end-points associated with RAGE and environmental 

exposure.

Results: A total of 213 studies were identified on the initial search. After removing the 

duplicates and applying inclusion/exclusions, we screened the titles and abstracts of 61 studies. 

Finally, 19 full text articles were included. The exposures discussed in these articles include, 

particulate matter (n=2) and cigarette smoke (n=17).

Conclusion: RAGE is a mediator of inflammation associated end-organ dysfunction such as 

obstructive airways disease. Soluble RAGE a decoy receptor may have a protective effect in some 

pulmonary processes. Overall, RAGE is biologically relevant in environmental exposure 
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associated lung disease. Future investigations should focus on further understanding the role and 

therapeutic potential of RAGE in particulate matter exposure associated lung disease.
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BACKGROUND

Obstructive airway disease (OAD) due to environmental exposure is a global health concern.

[1–3] Mounting evidence supports the role of receptor for advanced glycation end-products 

(RAGE), also known as the advanced glycation end-product receptor (AGER), in the 

development of OAD.[4–6]

RAGE is a member of the immunoglobulin superfamily and has several isoforms which 

recognize pathogens and endogenous ligands. RAGE is at the highest baseline level in the 

lungs, where it is expressed by alveolar type epithelial cells, alveolar macrophages, and the 

smooth muscle cells of the airways.[7, 8] The membrane bound form is a key mediator of 

inflammation, metabolic dysfunction, and vascular injury. [9–11]

Given its proinflammatory role and abundance in the lungs, RAGE has been shown as an 

important biomarker of airflow obstruction in various diseases such as cystic fibrosis, 

asthma, COPD and particulate matter (PM)-associated OAD.[12–16] Furthermore, RAGE 

has been implicated in a murine smoke-exposure model of emphysema.[17]

In human subjects with OAD, explanted lungs were noted to have increased expression and 

bronchoalveolar lavage (BAL) levels of RAGE.[4, 18] The association between RAGE and 

OAD has also been studied at the genomic level. Single nucleotide polymorphisms within 

the AGER locus have been linked to forced expiratory volume in one second (FEV1) in two 

genome-wide association studies (GWAS). [19, 20] AGER-associated loci using in vitro 
models have been investigated to further our understanding of possible mechanisms. The 

promoter variant AGER-429 T/C (rs1800625) is associated with severity of airflow 

obstruction in cystic fibrosis and cells with this functional variant have elevated RAGE 

expression.[21–23]

While the membrane bound form of RAGE has been implicated in airway inflammation and 

obstruction, the circulating soluble form (s)RAGE has been shown to act as a decoy receptor. 

Studies show that OAD, particularly COPD, is associated with reduced levels of circulating 

sRAGE.[13, 24] The utility of sRAGE as a diagnostic biomarker in OAD is currently being 

investigated.[14, 25] The exact correlation of sRAGE and lung disease appears to vary 

depending on the pulmonary insult. There is evidence that sRAGE is involved in 

pathogenesis of acute lung injury (ALI). One study showed that sRAGE was inversely 

correlated with the rate of alveolar fluid clearance.[26] In a direct ALI model elevated 

sRAGE levels were seen in BAL samples 24 hours after lipopolysaccharide-induced injury. 

Furthermore, treatment with mouse recombinant sRAGE one-hour post–injury, attenuated 

neutrophilic infiltration, inflammatory mediator production, and alveolar capillary 
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permeability.[27] A subsequent study showed that RAGE was only elevated in BAL fluid of 

mice with direct ALI compared to an indirect ALI model.[28]

The role of RAGE has been examined in several occupational lung diseases as well as 

pulmonary fibrosis. Some studies have suggested a protective effect, as evidenced by low 

expression of RAGE and sRAGE in human and mouse models of pulmonary fibrosis.[29, 

30] Consistent with this hypothesis, mice deficient in Ager (Ager−/−) develop rapidly 

progressive fibrosis with asbestos exposure.[31] In contrast, another study showed that Ager
−/− mice exhibited less fibrosis when exposed to bleomycin as compared to wild-type 

controls.[32] Furthermore, Ager−/− mice do not demonstrate any difference in the severity of 

fibrosis with silica exposure.[31] In models of atopic asthma, Ager−/− mice did not 

demonstrate airway hypersensitivity, eosinophilic inflammation and airway remodeling. In 

fact, Ager inhibition in wild type mice significantly reduced inflammation.[15]

Finally, our group has identified elevated serum lysophosphatidic acid (LPA), a product of 

low-density lipoprotein (LDL) and a known ligand of RAGE and sRAGE, as World Trade 

Center-Lung Injury (WTC-LI) biomarkers in the Fire Department of New York (FDNY)-

cohort.[33–35] We have therefore focused this systematic review on RAGE, a biologically 

plausible mediator and biomarker of environmentally associated OAD.

METHODS

Review Strategy:

A systematic review of the literature was performed adhering to the Preferred Reporting 

Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines.[36, 37] Our 

Population, Intervention, Control, Outcome (PICO) question was “In adult patients with 

obstructive airways disease(P), we performed a systematic review to identify(I) the role of 

the advanced glycation end-products receptor in subjects whose OAD is secondary to an 

environmental exposure(O)?” Given the design of our systematic review, no comparison 

control (C) was needed. PubMed and EMBASE were searched on 01/05/2018. The details of 

the protocol of our systematic review were registered on PROSPERO 

(2018CRD42018093834) and can be accessed at www.crd.york.ac.uk/prospero/

display_record.php?RecordID=93834.

Search Terms:

Databases were searched for the following:

(Particulate matter OR air pollutants OR air pollution OR occupational pollution 

OR environmental pollution OR ambient air OR pollution OR particle size OR air 

filters OR smoking OR cigarette smoke) AND (advanced glycation end products 

receptor or rage or ager) AND (lung OR respiratory OR lung diseases OR 

obstructive lung disease OR obstructive airway disease OR obstructive airways 

disease OR asthma OR chronic bronchitis OR COPD OR chronic obstructive 

pulmonary disease OR emphysema)

For the purposes of this review, we defined: obstructive airways diseases to include asthma, 

emphysema, chronic bronchitis and chronic obstructive pulmonary disease (COPD); 
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environmental exposures included cigarette smoke, particulate matter/dust, air or other 

occupational pollution. We chose to include cigarette use as an environmental exposure 

since there is literature that passive smoking or environmental tobacco smoke is associated 

with an increased risk of COPD similar to direct tobacco use.[38–40]

We included studies which: (1) discussed advanced glycation end products receptor or any 

of its isoforms in the setting of OAD due to environmental exposures and (2) assessed OAD 

development after environmental exposure. We excluded studies that (1) were not original 

research; (2) not written in English language; (3) focused on non-human subjects or in-vitro 

work; or were (4) conducted in a pediatric population.

Data Extraction:

Each article was screened for study design, patient characteristics, sample size, tools used, 

severity and prevalence of OAD. Results from each database search were filtered for human 

subjects and English language, and imported into EndNote X8. The references were then 

screened for duplicates using RefWorks (ProQuest LLC). Only original research papers were 

then reviewed for (title, abstract and full text) to ascertain eligibility. We also examined the 

references cited in the relevant articles. All results were screened by SHH and further 

independently evaluated by AN and AO. Disagreements were resolved by consensus, 

Supplemental Table 1–5.

RESULTS/SYNTHESIS

Study Inclusion, Characteristics and Sources of Bias.

A total of 213 studies were identified from PubMed, EMBASE and reference-list screening, 

Figure 1. After application of selection criteria, 61 research papers were assessed for 

inclusion. Out of these, 41 were excluded after the initial review. Finally, 19 original 

research articles were considered eligible to be included. There are two types of 

environmental exposures discussed in these articles, particulate matter (n=2) and cigarette 

smoke (n=17). Of these, six investigations discuss RAGE as a biomarker of OAD activity, 

seven evaluate the association of RAGE with OAD, four are GWAS discussing RAGE and 

its isoforms in COPD and smoking, and two discuss the role of RAGE in multiple end-organ 

outcomes. Data from all searches, screening and extraction are available, Table-1 and 
Supplemental Table-1.

RAGE in the Context of Particulate Matter Exposure.

Autophagy is critical in the pathogenesis of PM-related COPD, leading to diffusion 

impairment. One study investigated the association of clinically relevant biomarkers in PM10 

exposed COPD patients (GOLD Stages III/IV) in a retrospective study in Taiwan. The one-

year average PM10 exposure was positively correlated with IL-6, Ubiquitin and Beclin-1 

levels, while negatively correlated with DLCO, circulating RAGE level and oxygen saturation 

(ΔSaO2).[41] Recently, our group studied the role of sRAGE in the WTC-PM exposed 

firefighters as well as in a murine model of PM exposure. sRAGE is associated with WTC-

LI in humans and mice alike, and in the murine model, absence of RAGE was protective 

against loss of lung function and airway hyperreactivity due to WTC-PM exposure. [6]
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RAGE as a Biomarker of Emphysema.

Studies have evaluated sRAGE as a potential diagnostic biomarker in order to avoid chest 

imaging and possibly detect emphysema at earlier stages.[18, 42–44] A prior systematic 

review concluded that sRAGE is a strong biomarker of emphysema, but only in patients with 

airflow limitation. [14] Furthermore, peripheral plasma samples of individuals from the 

COPDGene population have been assessed for specific biomarker’s association with 

emphysema noted on CT imaging (Percent low lung attenuation ≤ −910 HU). Patients with 

more emphysema had lower sRAGE and ICAM1 levels. [45] These results were further 

validated in the Treatment of Emphysema with a Gamma-Selective Retinoid Agonist 

(TESRA) cohort, Table 1. [45]

RAGE Correlates with Severity of Emphysema.

In the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints 

(ECLIPSE) cohort of COPD patients, the change in CT lung density and severity of 

emphysema over the study period was correlated with a number of circulating biomarkers. 

At baseline, patients with higher levels of sRAGE and SP-D had less emphysema, while 

lower levels of CCL-18 correlated with more severe disease. Elevated sRAGE, fibrinogen, 

and IL-6 levels at baseline were associated with less progression of emphysema. [46]

In another study, serum samples of patients with stable COPD, smokers without COPD, and 

non-smoking controls, were compared for specific biomarkers. Extracellular RAGE-binding 

protein (EN-RAGE) and sRAGE levels were significantly different between those groups as 

well as in various stages of COPD. Overall, sRAGE levels were reduced in COPD patients 

and were more associated with variability in DLCO values. On the contrary, EN-RAGE levels 

were significantly elevated in severe COPD and more associated with FEV1 and FEV1/FVC 

values. These findings suggest that sRAGE and EN-RAGE may affect different lung 

function measures (airway obstruction or diffusion capacity), Tables 1 and 2. [47]

Role of sRAGE in WTC Particulate Matter Exposed Firefighters.

Our group has identified RAGE as a biomarker of WTC-PM induced FEV1 decline. Using a 

case-cohort design, we studied a cohort of never-smoking male FDNY firefighters exposed 

to WTC dust with normal pre-9/11 lung function. The odds of developing WTC-LI 

increased by 1.2, 1.8 and 1.0 in firefighters with sRAGE ≥ 97pg/mL, CRP ≥ 2.4mg/L, and 

MMP-9 ≥ 397ng/mL, respectively. We concluded that increased sRAGE is associated with 

WTC-LI, Tables 1 and 2. [6]

RAGE is a Biomarker of Vascular Injury.

A pilot study examined patients with COPD, smokers without COPD, and nonsmokers who 

had renal biopsy or nephrectomy. They measured AGE-RAGE and tissue oxidative stress 

levels in the pulmonary and renal endothelial cells and showed that they were indeed 

elevated in the COPD group. They also revealed similar findings in the cigarette smoke-

exposed mice. The investigators concluded that COPD patients and cigarette smoke-exposed 

mice have pulmonary and renal endothelial cell injury associated with the tissue oxidative 

stress-AGE-RAGE pathway.[48]
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Correlation of RAGE and Nitric Oxide (NO) Generation.

The role of RAGE in cigarette smoke-induced NO generation was studied by assessing the 

bronchial epithelia of smokers with COPD and compared to healthy smokers and 

nonsmokers with COPD. RAGE overexpression was noted only in smokers with COPD and 

positively correlated with NO levels, smoking status, and lung function decline. Human 

bronchial epithelial cells that were cultured in cigarette smoke extract had low sRAGE levels 

but enhanced RAGE and NO levels. Interestingly, increased NO level and NO synthase 

activity were all reversed by pretreatment of anti-RAGE antibody. [49]

Accumulation of RAGE in Different Body Compartments.

One study assessed AGE and sRAGE levels in plasma, sputum, bronchial biopsies, and skin 

and tested whether differential tissue accumulation is associated with COPD [50]. Skin 

autofluorescence of AGE and sRAGE in blood and sputum was measured by ELISA, and by 

immunohistochemistry in the bronchial biopsies. COPD patients had increased accumulation 

of AGE in the skin compared to non-COPD smokers and never smokers. This difference in 

expression was not seen in bronchial tissues of different groups. Lower FEV1% of predicted 

and FEV1/FVC ratio were independently associated with a higher AGE levels in skin [50]. 

sRAGE levels were significantly lower in the plasma of COPD patients compared to young 

and old healthy subjects. These levels were also negatively correlated with the severity of 

COPD. Patients with lower sRAGE levels had lower FEV1, lower DLCO and higher AGE 

accumulation in the skin. They hypothesized that sRAGE has a protective effect and 

functions as a decoy-receptor, preventing accumulation of AGE in the skin.[50]

RAGE as a biomarker of cardiovascular disease (CVD) in COPD.

The results of studies assessing sRAGE and CVD are heterogeneous. One study looked 

specifically at COPD patients and non-COPD smokers with calculated cardiovascular (CV) 

risk prediction scores.[51] The CV risk prediction scores and sRAGE levels were the same 

in both groups. They found no associations between sRAGE and diabetes or aortic pulse 

wave velocity.[51] In the absence of ischemic heart disease or diabetes, COPD patients had 

significantly lower levels of sRAGE which is consistent with prior literature.

sRAGE as a Marker of Longitudinal Loss of Lung Function.

A longitudinal cohort study of non-smokers, smokers without COPD, and smokers with 

COPD in Northern Finland was performed with measurements of HMGB1, a ligand of 

RAGE, sRAGE, and lung function testing. There were no significant differences in the 

HMGB1 levels between the study groups, but patients with severe airflow obstruction had 

higher levels than others.[52] This result is consistent with prior findings. Lower sRAGE 

levels were associated with longitudinal decline of FEV1/FVC in all groups, Table 2. This 

was particularly evident in smokers with COPD as lower sRAGE levels predicted 

longitudinal decline in FEV1.

Genetic Polymorphism of RAGE in COPD.

The genetic polymorphism of RAGE is less well studied in COPD compared to 

inflammatory diseases such as Crohn’s disease. There are 1517 single nucleotide 
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polymorphisms (SNPs) detected in the RAGE gene, but are mostly nonsense mutations.[53] 

Three functional SNPs in the promoter region (−429T/C and −374T/A) and one SNP in exon 

3 (G82S) of the AGER gene have been studied. One study in a Chinese population showed 

that G82S polymorphism was significantly higher is COPD patients and associated with 

higher risk of developing COPD in current smokers.[53] In another study of a Polish 

population with severe COPD, a number of SNPs associated with lung function were 

investigated including AGER, ADCY2, THSD4. They identified associations between 

CHRNA3/5, IREB2, FAM13A and COPD, as well as ADCY2 with severe COPD.[54] A 

GWAS on two quantitative emphysema and airway imaging phenotypes using the 

COPDGene, ECLIPSE, National Emphysema Treatment Trial (NETT), and GenKOLS 

cohorts, found five loci of interest. AGER was associated with COPD and spirometric 

measures related to airflow obstruction as well as emphysema and sRAGE levels.[55] 

Furthermore, the Ser82 RAGE variant was associated with higher FEV1, FEV1/FVC and 

lower serum sRAGE levels in United Kingdom (UK) smokers. The investigators also found 

that HMGB1 activation of the RAGE-Ser82 receptor resulted in lower sRAGE levels.

RAGE a biomarker of Asthma.

Although asthma was not the clinical focus of any of the studies that met all inclusion/

exclusion criteria of our systematic review, the development of an asthmatic phenotype may 

occur in the context of an environmental exposure. In review of this literature we found that 

patients with neutrophilic asthma and COPD had significantly lower levels of sRAGE in 

BAL, plasma and serum relative to healthy controls and those with non-neutrophilic asthma 

and COPD. HMGB1, a potent mediator of neutrophilic inflammatory response and a RAGE 

ligand, was slightly increased in neutrophilic patients. Consistent with our understanding of 

the role of sRAGE, lack of inhibition of downstream inflammatory effects of RAGE may 

play a role in development of neutrophilic asthma.[13] The role of RAGE has also been 

implicated in the pathophysiology of eosinophilic asthma. In a murine model, wild-type 

(WT) and RAGE knockout (KO) mice were exposed to house dust mite (HDM) extract and 

sensitized with ovalbumin. HDM exposed WT mice exhibited increased airway resistance 

and small airway tissue damping in response to methacholine challenge relative to RAGE 

knockouts. Absence of RAGE was associated with absence of inflammatory infiltrates, lack 

of elevated mucin expression or goblet cell hyperplasia. IL-5, IL-13 and eotaxin were 

significantly elevated in HDM exposed WT mice and to a lesser degree in RAGE knockout 

mice.[15] In another murine study, WT and RAGE KO mice were sensitized with 

ovalbumin. The WT mice exhibited significantly elevated levels interferon-gamma and IL-5, 

when compared to RAGE KO mice, Table 2. [16]

DISCUSSION

Our systematic review identified 19 original articles where the role of RAGE is found to be 

important in the development of environmental exposure related OAD. These studies had 

significant differences in the populations, methods, and outcomes that were studied, Table 1. 

However, these studies allow us to further define the role of RAGE in the development of 

OAD related to a heterogeneous environmental exposure. These studies suggest that RAGE 

may be a multifaceted contributor to OAD development.

Haider et al. Page 7

Eur Respir Rev. Author manuscript; available in PMC 2020 February 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Particulate matter exposure causes systemic inflammation, endothelial dysfunction, and 

subsequent end-organ damage leading to OAD.[56–58] These effects are particularly evident 

as loss of lung function associated with the WTC particulate matter exposure.[59–70] There 

is mounting evidence that RAGE is a biologically plausible mediator of inflammation and 

vascular injury, and is associated with conditions such as metabolic syndrome and OAD.

In most organs, RAGE is expressed at low baseline levels and increases with disease activity 

as seen in the lungs of COPD patients.[4] The highest expression of RAGE occurs in the 

lungs but its deleterious effects are not just limited to this organ. For instance, AGE-RAGE 

levels are elevated in the pulmonary and renal endothelial cells of patients with COPD.[48] 

Accumulation of AGEs in different organs appears to vary and correlates with the levels of 

circulating sRAGE. A prior study showed that accumulation of AGEs in the skin is directly 

correlated with low circulating sRAGE levels in COPD patients. This has led to the 

hypothesis that sRAGE acts a decoy receptor and appears to be protective against the 

inflammatory effect of membrane bound RAGE. Patients with higher particulate matter 

exposure and associated COPD have lower levels of sRAGE. These levels also correlate well 

with severity of COPD and predict longitudinal decline in FEV1, Table 1/2.

A finer understanding of the RAGE pathway and its role in inflammation associated OAD 

may allow us to identify therapeutic targets to halt progression of diseases such COPD. In 

one study, administration of sRAGE or deletion of RAGE gene mitigated LPA-RAGE 

interaction and disease development.[34] RAGE has been the focus of targeted therapeutic 

trials.[9, 71–73]

RAGE is a key mediator of MetSyn which affects more than 30% of adults in the United 

States.[74–76] A diet high in caloric content is a key contributor to MetSyn. Several groups 

are actively studying the MetSyn and lung disease associated with environmental exposures. 

Several studies of WTC-exposed cohorts (a high particulate exposed group) have described a 

high incidence of obesity.[75, 77] In addition, we found that a multi-metabolite model was 

able to differentiate between those with WTC-LI and those without.[70] One of the key 

mediators of your metabolome is diet and we know that dietary interventions that have 

focused on weight loss in obstructed patients show improvement of both FEV1 and FVC by 

as much as 22% in as little as 15 days.[78, 79] Using a very low calorie diet, investigators 

have been able to achieve a 20kg loss over a 6-month period; every 10% relative loss of 

weight, led to a significant improvement of FVC by 92 mL, and FEV1 by 73mL.[80] As 

patients decreased their body mass index from 37 to 32kg/m2, the mean morning FEV1 and 

FVC significantly increased.[81] Improvement of lung function in obese subjects that 

undergo weight loss is due predominately to changes in lung mechanics. Associated 

biochemical changes that may play a role are active areas of investigation and are a focus of 

our future work. Additionally, recent studies show the effectiveness of calorie reduced and 

Mediterranean diets in reducing lipid levels.[82] While moderating fats can be essential to 

maintaining a healthy diet, there is extensive literature that explores the potential health 

benefits of fats high in a Mediterranean diet, such as n-3 and n-6 PUFAs. [83, 84]

Systematic reviews have inherent biases that we addressed through design of our search 

algorithm. Our systematic review is affected by selection, detection, performance, and 
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reporting bias. Selection bias was addressed by having a pre-determined inclusions and 

exclusions criteria and distinct definitions. Detection and performance bias were addressed 

by having at least two rounds of screening individually performed. Reporting bias was 

addressed through PubMed and EMBASE-search filters that included peer-reviewed 

published articles that were written in English and that focused on human subjects. 

Removing duplicates further limited reporting bias.

The development of OAD due to environmental exposure is a leading cause of morbidity and 

mortality worldwide. RAGE is involved in the inflammatory cascade of events that lead to 

development of obstructive airway disease. Soluble RAGE acts as a decoy receptor and may 

have a protective effect against development of OAD. Patients with lower levels of soluble 

RAGE may have more severe COPD and emphysema. By targeting RAGE mediated 

inflammation, we may mitigate progression of obstructive airways disease.

Supplementary Material
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LIST OF ABBREVIATIONS

AF Autofluorescence

AAT Alpha-1 Antitrypsin

ADCY2 Adenylate Cyclase 2

AGE Advanced Glycation End Products

AGER Advanced Glycation End Products Receptor

BAL Bronchoalveolar Lavage

BNP Brain Natriuretic Peptide

BP Blood Pressure

CEL Nε-(carboxyethyl) lysine

CHRNA Cholinergic Receptor Nicotinic Alpha 1 Subunit

CML Nε-(carboxymethyl) lysine

CN China
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COPD Chronic Obstructive Pulmonary Disease

CRP C-Reactive Protein

CV Cardiovascular

CT Computed tomography

DE Germany

DLCO Diffusing capacity of the lung for carbon monoxide

DNA Deoxyribose Nucleic Acid

EC Ethylenedicysteine

ECLIPSE Evaluation of COPD Longitudinally to Identify Predictive Surrogate 

Endpoints

ELISA Enzyme-linked immunosorbent assay

eGFR Estimated Glomerular Filtration Rate

EN-RAGE Extracellular RAGE-Binding Protein

esRAGE Endogenous secretory RAGE

FEV Forced Expiratory Volume

FVC Forced Vital Capacity

FR France

GenKOLS Genetics of COPD, Norway

GWAS Genome Wide Association Studies

GOLD Global Initiative for Chronic Obstructive Lung Disease

HBE Human Bronchial Epithelial Cells

HMGB1 High Mobility Group Box 1

HU Hounsfield unit

hsCRP High Sensitivity C-Reactive Protein

IL-1β Interleukin 1-beta

IL-6 Interleukin-6

IPF Idiopathic Pulmonary Fibrosis

IREB2 Iron Responsive Element Binding Protein 2

IT Italy
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LPA Lysophosphatidic Acid

LP15A 15th Percentile on Lung Attenuation Curve

MMP-9 Matrix Metalloproteinase 9

MS Mass Spectrometry

NETT National Emphysema Treatment Trial

NL Netherlands

NO Nitric Oxide

OAD Obstructive Airways Disease

PCR-RFLP Polymerase Chain Reaction-Restriction Fragment Length 

Polymorphism

PD15 Lowest 15th Percentile of Frequency Distribution

PM Particulate Matter

PM10 Particulate Matter <10 μm in Aerodynamic Diameter

PRISMA Preferred Reporting Items for Systematic Reviews and Meta-

Analyses

PWV Pulse Wave Velocity

RAGE Receptor for Advanced Glycation End-Products

ROCAUC Receiver Operating Characteristic Area Under the Curve

RV Residual Volume

s Soluble

SaO2 Oxygen Saturation

SNP Single Nucleotide Polymorphism

SP-D surfactant protein D

TESRA Treatment of Emphysema with a Gamma-Selective Retinoid Agonist

TLC Total Lung Capacity

UACR Urinary Albumin/Creatinine Ratio

UK United Kingdom

US United States

WB Western Blot

WBC White Blood Cell Count
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WTC World Trade Center

%LAA Percent Low Lung Attenuation

2-DE 2-Dimentional Electrophoresis
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Figure 1: Flow Diagram as per PRISMA Guidelines.
Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS 

Med 6(7): e1000097. www.prisma-statement.org.
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